

Code No. : 13165 N/O (M)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. III-Semester Main and Backlog Examinations, Jan./Feb.-2024

Complex Variables (OE-I)

Time: 3 hours

Max. Marks: 60

Note: Answer a	ll questions from	n Part-A	and any	FIVE from	Part-B
Part-A $(10 \times 2 = 20 \text{ Marks})$					

Q. No.	Stem of the question	M	L	СО	PO
1.	If $f(z) = \frac{z}{ z }$ for $z \neq 0$ and $f(0) = 0$, check for its continuity at $z=0$.	2	2	1	1,2,12
2.	Show that $f(z) = Re(z)$ is continuous but not differentiable.	2	2	1	1,2,12
3.	Evaluate $\int z ^2 dz$ along the real axis from $z = 0$ to $z = 2$	2	2	2	1,2,12
4.	State Cauchy's Integral formula.	2	1	2	1,2,12
5.	Define (i) singular point (ii) pole of order 'm' for a complex function	2	1	3	1,2,12
6.	Find out the zero(s) of the function $f(z) = \frac{z-2}{z^2} sin \frac{1}{z-1}$	2	2	3	1,2,12
7.	State Cauchy's Residue theorem	2	1	4	1,2,12
8.	Determine poles of the function $\frac{z^2}{(z-1)(z-2)^2}$	2	2	4	1,2,12
9.	State necessary and sufficient condition for a complex function $f(z) = u + iv$ to be analytic.	2	1	1	1,2,12
10.	Evaluate $\int_0^{4+2i} \bar{z} dz$ along the curve $z = t^2 + it$.	2	2	2	1,2,12
	Part-B ($5 \times 8 = 40$ Marks)				
11. a)	Find the values of 'a' and 'b' so that the function $f(z) = x^2 + ay^2 - 2xy + i(bx^2 - y^2 + 2xy)$ is analytic.	4	1	1	1,2,12
b)	Prove that $u(x, y) = \frac{1}{2}\log(x^2 + y^2)$ is harmonic. Find its harmonic conjugate.	4	2	1	1,2,12
12. a)	Evaluate $\oint_c \frac{4-3z}{z(z-1)(z-2)} dz$ where 'c' is the circle $ z = \frac{3}{2}$	4	4	2	1,2,12
b)	State and prove Cauchy's theorem.	4	1	2	1, 2, 12
13. a)	$z^2 - 3z + 2$	4	3	3	1,:2,12
	(ii) $1 < z < 2$				
b)	Classify all the singular points of the function $\frac{1}{z-z^3}$	4	2	3	1,2,12

Contd... 2

170

Code No. : 13165 N/O (M)

14. a)	Determine the poles of the following function and residues at each pole.	4	2	4	1,2,12
	$f(z) = \frac{z - 1}{(z + 1)^2(z - 2)}$	8-11			
b)	Find the sum of the residues of the function $f(z) = \frac{sinz}{zcosz}$ at its poles inside the circle $ z = 2$.	4	4	4	1,2,12
15. a)	Find an analytic function whose imaginary part is $e^{-x}(x\cos y + y\sin y)$	4	2	1	1,2,12
b)	Evaluate $\oint_c \frac{e^z}{(z^2 + \pi^2)^2} dz$ where C is $ z = 4$	4	4	2	1,2,12
16. a)	Find the Laurent's series which represent the function $\frac{z^2-1}{(z+2)(z+3)}$ in (i) 2 < $ z < 3$ (ii) $ z > 3$	4	3	3	1,2,12
b)	Evaluate $\oint_c \frac{1+z}{z(2-z)} dz$ using residue theorem where C is the circle $ z = 1$	4	4	4	1,2,12
17.	Answer any <i>two</i> of the following:				
a)	If $u - v = (x - y)(x^2 + 4xy + y^2)$ and $f(z) = u + iv$ is an analytic function of $z = x + iy$, find $f(z)$ in terms of z.	4	2	1	1,2,12
b)	Evaluate $\oint_c \frac{z+1}{z^2-9} dz; C: z+3 = 1$	4	4	2	1,2,12
c)	Find Taylor's series expansion of $f(z) = \frac{z+1}{(z-3)(z-4)}$ about the point $z =$	4	3	3	1,2,12
	2. Also determine the region of convergence.				

1)	Broomb runonomy Dever	2070
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%

ARY) is antipute.